Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2.
نویسندگان
چکیده
During cell division, cessation of transcription is coupled with mitotic chromosome condensation. A fundamental biological question is how gene expression patterns are retained during mitosis to ensure the phenotype of progeny cells. We suggest that cell fate-determining transcription factors provide an epigenetic mechanism for the retention of gene expression patterns during cell division. Runx proteins are lineage-specific transcription factors that are essential for hematopoietic, neuronal, gastrointestinal, and osteogenic cell fates. Here we show that Runx2 protein is stable during cell division and remains associated with chromosomes during mitosis through sequence-specific DNA binding. Using siRNA-mediated silencing, mitotic cell synchronization, and expression profiling, we identify Runx2-regulated genes that are modulated postmitotically. Novel target genes involved in cell growth and differentiation were validated by chromatin immunoprecipitation. Importantly, we find that during mitosis, when transcription is shut down, Runx2 selectively occupies target gene promoters, and Runx2 deficiency alters mitotic histone modifications. We conclude that Runx proteins have an active role in retaining phenotype during cell division to support lineage-specific control of gene expression in progeny cells.
منابع مشابه
مقایسه بیان کمّی فاکتور نسخهبرداری RUNX2 در تمایز سلولهای بنیادی مزانشیمی با محیط تمایزی استئوبلاستی و داروی زولدرونیک اسید
Background and Objectives : RUNX2 is the most specific transcription factor in osteoblastic differentiation of MSCs. In this research, RUNX2 expression was quantified in MSCs differentiated by osteogenic differentiation medium (ODM) and zoledronic acid (ZA). Materials and Methods: In this experimental study, hMSCs were treated by osteogenic differentiation medium and ZA. RNA extraction was ...
متن کاملEffect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملPhenotypic transcription factors epigenetically mediate cell growth control.
Ribosomal RNA (rRNA) genes are down-regulated during osteogenesis, myogenesis, and adipogenesis, necessitating a mechanistic understanding of interrelationships between growth control and phenotype commitment. Here, we show that cell fate-determining factors [MyoD, myogenin (Mgn), Runx2, C/EBPbeta] occupy rDNA loci and suppress rRNA expression during lineage progression, concomitant with decrea...
متن کاملTranscription factor retention on mitotic chromosomes: regulatory mechanisms and impact on cell fate decisions.
During mitosis, gene transcription stops, and the bulk of DNA-binding proteins are excluded from condensed chromosomes. While most gene-specific transcription factors are largely evicted from mitotic chromosomes, a subset remains bound to specific and non-specific DNA sites. Here, we review the current knowledge on the mechanisms leading to the retention of a subset of transcription factors on ...
متن کاملA program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2.
Lineage progression in osteoblasts and chondrocytes is stringently controlled by the cell-fate-determining transcription factor Runx2. In this study, we directly addressed whether microRNAs (miRNAs) can control the osteogenic activity of Runx2 and affect osteoblast maturation. A panel of 11 Runx2-targeting miRNAs (miR-23a, miR-30c, miR-34c, miR-133a, miR-135a, miR-137, miR-204, miR-205, miR-217...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 9 شماره
صفحات -
تاریخ انتشار 2007